Close
Skip to content

Методы выделения ДНК из биологического материала

Методы выделения ДНК из биологического материала


Выделение ДНК и РНК — важный шаг подготовки проб перед биохимическими и диагностическими процессами. Амплификация, проведение обратной транскрипции, детектирование накопления продуктов амплификации методом ПЦР в реальном времени, клонирование, секвенс, гибридизация, синтез ДНК и т. д., не могут быть выполнены непосредственно на биологических образцах без предварительного выделения (экстракции) нуклеиновых кислот (НК) и их последующей очистки.

Почему так важно получить высококачественную ДНК?

Так как в ветеринарной клинической практике наиболее используемым методом является ПЦР в реальном времени (или, в некоторых случаях, классическая ПЦР), рассмотрим методы выделения НК и их особенности будут рассмотрены именно с точки зрения данного вида анализа.

Механизм ПЦР.

Как известно, ПЦР (полимеразная цепная реакция) представляет собой реакцию синтеза комплементарной цепочки ДНК на ДНК матрице, катализируемую ферментом ДНК-зависимой ДНК-полимеразой. Фермент термостабильный – он может выдерживать высокие температуры, необходимые на этапе денатурации. Оптимум работы полимеразы составляет около 72°C. Для создания оптимальных условий синтеза образец ДНК помещается в так называемую реакционную смесь (РС).

Реакционная смесь состоит:

  1. Буфер для ПЦР. Это буферный раствор с определенным значением pH и концентрацией различных солей и кофакторов, необходимых для работы полимеразы. В наше время компании-производители реактивов для ПЦР предлагают к своим полимеразам фирменные буферы.
  2. ДНК-зависимая ДНК-полимераза. Катализатор реакции, чаще всего выделяется из термофильной бактерии Thermus aquaticus (Taq-полимераза).
  3. Нуклеотидтрифосфаты (dNTPs). Раствор мононуклеотидтрифосфатов (dATP, dCTP, dTTP, dGTP) в свободном виде, которые служат «строительным материалом» для синтеза ампликонов.
  4. Праймеры. Короткие синтезированные последовательности ДНК (олигонуклеотиды), фланкирующие исследуемые участки ДНК – от них полимераза начинает свою работу.
  5. MQ вода. Дистиллированная и деионизированная вода, пригодная для молекулярно-генетических исследований. Используется для доведения реакционной смеси до рабочей концентрации.
  6. ДНК. Собственно, сам образец ДНК, который необходимо исследовать.

При должном качестве всех компонентов реакционной смеси реакция может ингибироваться только из-за плохой очистки ДНК. Ингибиторы ПЦР представляют собой вещества, способные повлиять на конформацию фермента и уменьшить его активность, вплоть до полной деактивации. Эти примеси могут оказаться в растворе ДНК по двум причинам:

  1.  Плохая очистка образца от остатков веществ, которые содержались в материале, из которого производилось выделение. Ингибировать ПЦР могут остатки жиров, белков, углеводов, пигментов (для растительных клеток – хлорофиллы, каратиноиды, антоцианы, для животных – гемоглобин и др.). Сюда же относятся и вещества, которые были использованы в качестве транспортной или консервационной среды для образца (ЭДТА, гепарин, формальдегид).
  2. Плохая очистка образца от реагентов, которые были использованы в процессе выделения. Сильно ингибируют ПЦР детергенты (ПАВ) и денатуранты, такие как SDS (додецилсульфат натрия) и мочевина; спирты и другие неполярные растворители, которые содержатся в экстрагентах и отмывочных буферах (этанол, изопропанол, фенол и др.).

Список некоторых веществ, которые могут негативно повлиять на эффективность ПЦР, показан в таблице 1.

Таблица 1. Некоторые ингибиторы процесса ПЦР

Ингибитор Концентрация ингибитора
SDS > 0.005%
Фенол > 0.2%
Этанол > 1%
Изопропанол > 1%
Ацетат натрия > 5 mМ
Хлористый натрий > 25 mМ
EDTA > 0.5 mМ
Гемоглобин > 1  мг/мл
Гепарин > 0.15 i.m/мл
Мочевина > 20 mМ
Агароза (при выделении ДНК из геля) > 1%
РНК > 0,5 мкг/20мкл
Реакционная смесь > 15%

 

Из этого можно сделать вывод, что ключевыми факторами успешного выделения НК является грамотная подготовка материала, правильный выбор метода экстракции и точное соблюдение требований протокола выделения.

Какие требования предъявляются к материалу для выделения нуклеиновых кислот?

Прежде всего, биологические образцы должны быть взяты в достаточном количестве для проведения анализа, кроме того, образца должно хватить для проведения повторного анализа. При этом необходимо учитывать вариации содержания НК в различных органах и тканях, а также уменьшение содержания НК из-за деградации, если образец был взят через большой промежуток времени после смерти животного.

Экстракцию нуклеиновых кислот следует начинать как можно скорее после отбора свежих тканей. Ткань может храниться в условиях низкой температуры в холодильнике в течение нескольких дней без риска деградации НК. Однако, если выделение невозможно в ближайшее время, образец должен быть заморожен до температуры от -20°C до -80°C. При этом целесообразно использовать для хранения и перевозки образцов одноразовую пластиковую пробирку или другие плотно закрывающиеся емкости.

После экстракции целесообразно проверить качество выделенной НК, например, измерить концентрацию с помощью флюориметра/спектрофотометра, провести гель-электрофорез или ПЦР со специальными праймерами – факторами элонгации.

Обзор методов выделения НК

Выделение нуклеиновых кислот – один из базовых методов молекулярной биологии. В прошлом процесс выделения и очистки НК был сложным, времязатратным, трудоемким и имел ограничения с точки зрения скорости обработки образцов. На сегодняшний день имеется множество специализированных методик, которые могут использоваться для выделения нуклеиновых кислот с высокой степенью очистки. Их можно условно разделить на две группы: осаждение НК на суспензионный носитель и выделение на колонках. Безусловно, традиционные методы выделения являются надежными и прошли испытание временем, но сейчас на рынке имеется широкий ассортимент товаров, включая полные наборы, содержащие большинство реагентов, необходимых для выделения нуклеиновых кислот. Однако, большинство из них все же требует многократных этапов центрифугирования, которые сопровождаются удалением супернатанта (прим. фаза дисперсионной системы, которая располагается сверху от границы раздела фаз).
В последний годы повысился спрос на автоматические системы. Разработанные для средних и крупных лабораторий, они являются альтернативой трудоемкому ручному методу. Данная технология значительно повышает производительность лаборатории. При этом выход НК и чистота материала, воспроизводимость и прогностичность эксперимента будут максимальными (так же как скорость, точность и надежность анализа в целом), а риск кросс-контаминации (перекрестного заражения) минимизируется.

Фенол-хлороформная экстракция (Guanidinium Thiocyanate-Phenol-Chloroform Extraction).

Обычно протокол выделения нуклеиновых кислот включает следующие этапы: 1.) клеточный лизис, в результате которого разрушаются клеточные структуры и образуется лизат, 2.) инактивацию нуклеаз клетки, таких как ДНКаза и РНКаза, 3.) выделение искомой нуклеиновой кислоты из клеточного дербиса. Экстракция с помощью смеси фенол-хлороформ – один из наиболее старых, но, тем не менее, широко используемых методов выделения нуклеиновых кислот.
Несмотря на то, что фенол – легковоспламеняющееся, коррозионное и токсичное для человека вещество, он способен очень активно денатурировать белки, но не полностью инактивирует РНКазы. Эту проблему можно решить, используя смесь фенол : хлороформ : изоамиловый спирт (в пропорции 25:24:1).
При смешивании фенола и хлороформа образуется двухфазная эмульсия. После центрифугирования гидрофобный слой эмульсии, в котором собираются белки, липиды и углеводы, оседает на дно, а гидрофильный остается сверху. Отбирается верхняя фаза, содержащая ДНК, после чего ДНК осаждают из супернатанта путем добавления этанола или изопропанола в соотношении 2:1 или 1:1 на фоне высокой концентрации солей в лизате. Соли – обычные примеси в образцах нуклеиновых кислот, поэтому их всегда необходимо удалять из образца перед любыми последующими процессами и планируемыми анализами. Следовательно, для обессоливания образца, содержащего нуклеиновую кислоту, требуется одна или несколько стадий отмывки.
Осажденную ДНК выделяют путем повторного центрифугирования, причем избыток солей вымывается с помощью 70%-го этилового спирта, а центрифугирование необходимо для удаления супернатанта – этанола. Затем осажденную ДНК растворяют с помощью ТЕ-буфера или MQ-воды.

FTA-карты.

В данной методике нуклеиновые кислоты выделяются прямо на специальной бумаге, пропитанной смесью реагентов, связывающих ДНК. Для выделения достаточно нанести каплю образца на карту, после чего нанести на нее буфер для выделения и высушить. В дальнейшем, карту можно разрезать на фрагменты и загружать прямо в пробирку для ПЦР. Данный метод подходит только для жидких образцов и не пригоден для ПЦР в реальном времени, однако по времени анализа ему нет равных.

С помощью коммерческих наборов (KITs)

Для выделения НК возможно подготовить высококачественные образцы для анализа прямо «из коробки». По сравнению с традиционными методами они обеспечивают более быстрое и менее трудоемкое выделение. Многие затруднения, свойственные фенол-хлороформной экстракции, например, неполное разделение фаз, в данном случае исключены. В процессе выделения твердая фаза системы (сорбент) адсорбирует на себя нуклеиновые кислоты в зависимости от pH и ионной силы буфера. Процесс адсорбции основывается на следующих принципах: образование водородных связей с гидрофильной матрицей в хаотропных условиях, с последующим ионным обменом в жидкой среде с помощью анионообменника посредством отбора молекул по их афинности и размеру. В большинстве случаев твердофазная экстракция осуществляется с использованием колонки для очистки ДНК (spin column), через которую проходит лизат под воздействием центробежной силы. По сравнению с традиционными способами очистки данный метод имеет преимущество в скорости работы. В качестве носителя используются силикатные носители (силика), стеклянные частицы, диатомит и анионообменные носители.

Протокол твердофазной экстракции включает четыре ключевых шага: клеточный лизис; адсорбцию нуклеиновых кислот, отмывку и десорбцию (элюцию). Исходным этапом является установка колонки для адсорбции образца. Подготовка колонки производится с использованием буфера с определенным pH – для того, чтобы придать поверхностным структурам (или функциональным группам) сорбента необходимые свойства – только в таком случае ДНК или РНК будут «налипать» на носитель. Следующий шаг – образец, расщепленный с помощью лизирующего буфера, помещают на колонку. Искомая нуклеиновая кислота адсорбируется на колонке за счет высокого pH и концентрации солей в связывающем растворе (binding solution). Прочие составляющие, такие как белки, также могут образовывать прочные специфические соединения с поверхностью колонки. Эти нежелательные примеси можно удалить на стадии промывания, используя промывочный буфер (wash buffer), который содержит вещества, не дающие им адсорбироваться. Для того, чтобы высвободить нуклеиновую кислоту с колонки на стадии десорбции, используется ТЕ-буфер или MQ-вода.
Так называемые селективные носители (mixed-bed solid phases) представляют собой смесь по крайней мере двух различных сорбентов, которые могут быть твердыми или полутвердыми, пористыми или непористыми. Каждый из них способен связываться с целевой нуклеиновой кислотой при определенных условиях.

Силикатные носители (Силика, Silica Matrices).

Основой для большинства наборов для выделения и очистки нуклеиновых кислот, являются уникальные свойства силиконовых носителей для селективного связывания НК. К таким относятся стеклянные шарики и микроволокна, силикатные частицы, а также диатомовая земля (диатомит).
Сюда же можно отнести носители из гидроокиси кремния (hydrated silica matrix), которые изготовливают путем нагревания смеси из диоксида кремния и гидроксида натрия (либо гидроксида калия) в молярном соотношении от 2:1 до 10:1 в течение 48 часов. ДНК связывается с неорганическим носителем и высвобождается при элюции. Принцип очистки нуклеиновых кислот с помощью силикатных носителей базируется на высокой афинности отрицательно заряженного остова ДНК к положительно заряженным силикатным частицам. Натрий играет роль катионного мостика, который притягивает отрицательно заряженный кислород в фосфатном «скелете» нуклеиновой кислоты. В условиях высокой ионной силы (pH ≤ 7) катионы натрия разрушают водородные связи между водородом воды и отрицательно заряженными ионами кислорода в силикатном материале. В этих условиях ДНК тесно связывается с носителем, а интенсивное промывание позволяет удалить все нежелательные примеси. Очищенные молекулы ДНК могут быть десорбированы позже, уже при низкой ионной силе раствора (pH ≥ 7), с использованием ТЕ-буфера или MQ-воды.
Кроме силикатных носителей, связывать нуклеиновые кислоты способны также нитроцеллюлоза и полиамидные мембраны (polyamide membranes) (например, нейлоновые матрицы), однако они имеют меньшую специфичность.
Вышеперечисленные материалы используются в качестве транспортировочных и гибридизационных носителей для твердофазной экстракции НК. Полиамидные носители более долговечны, чем целлюлозные, и способны необратимо связывать нуклеиновые кислоты. Нуклеиновые кислоты могут быть иммобилизованы на полиамидных сорбентах при низкой ионной силе буферного раствора.

Стеклянные носители (Glass Particle).

Для очистки нуклеиновых кислот используются частицы стекла, стеклянный порошок и стеклянные шарики. Адсорбция нуклеиновых кислот на стеклянный субстрат базируется на тех же принципах, что адсорбционная хроматография.
Очистка нуклеиновых кислот также может осуществляться на силикагеле и стеклянной суспензии в присутствии раствора хаотропных солей.

Диатомит.

Диатомовая земля, известная также как кизельгур или диатомит, содержит до 94% кремния. Применяемая для фильтрации и в хроматографии, она подходит и для очистки плазмидной и ядерной ДНК. Впоследствии ДНК, связанная с диатомитом, вымывается с помощью спиртосодержащего буфера. Потом буфер сливается, а ДНК элюируется.

Очистка нуклеиновых кислот с использованием магнитных микроносителей (Magnetic Bead Based Nucleic Acid Purification).

Магнитная сепарация – современный, простой и эффективный способ очистки нуклеиновых кислот. Удобство данного метода заключается в том, что, намагниченные частицы могут быть удалены с помощью постоянного магнита. К стенке пробирки прикладывают магнит, благодаря чему происходит агрегация частиц вблизи него, после чего оставшуюся часть образца выливают. То есть не требуется ни органических растворителей, ни многократного центрифугирования, вакуумной фильтрации или осаждения на колонках. Часто для процесса выделения используют магнитные носители с иммобилизованными аффинными лигандами или носители, полученные из биополимера с аффинностью к целевой нуклеиновой кислоте. К таким относятся магнитные частицы, полученные из различных синтетических полимеров, биополимеров, пористого стекла или на основе неорганических магнитных материалов (например, поверхностно-модифицированный оксид железа).
Для более эффективного связывания нуклеиновых кислот предпочтительно использовать материалы с большой суммарной площадью поверхности. Магнитные материалы в виде шариков (beads) более предпочтительны из-за их большей связывающей способности, так как НК буквально «оборачиваются» вокруг круглых частиц.
Существует метод выделения НК с помощью инкапсулированных в полимер магнитных частиц. Чаще всего для этих целей используют целлюлозу, а в качестве магнитного компонента – оксиды железа или никеля. Особенность данного метода заключается в том, что нуклеиновые кислоты малого размера требуют более высоких концентраций солей для прочного связывания с модифицированными магнитными частицами. Следовательно, концентрацию соли можно избирательно изменять, чтобы высвободить связанную нуклеиновую кислоту нужного размера.

Анионообменные смолы.

Анионообменные смолы – класс носителей, в которых используется принцип анионного обмена. Он основан на взаимодействии между положительно заряженными группами диэтиламиноэтилцеллюлозы (DEAE) на поверхности смолы и отрицательно заряженными фосфатными группами ДНК-скелета. Анионообменная смола состоит из силикатных гранул с большим размером пор и гидрофильного поверхностного слоя. Большая суммарная площадь поверхности смолы обеспечивает плотное соединение DEAE-групп с НК. Смола работает в широком диапазоне рН (рН=6-9) и/или концентрации солей (0,1-1,6 М). Благодаря этому такие примеси, как белок и РНК вымываются из смолы с при использованием буферов со средней ионной силой, в то время как ДНК остается связанной с ней до этапа элюирования буфером с высокой ионной силой.

Подводя итог, можно заключить, что современный рынок материалов для выделения нуклеиновых кислот характеризуется большим разнообразием. Все методики позволяют получать высококачественные образцы, пригодные для клинических исследований, однако следует учитывать условия работы лаборатории (вид анализов, количество образцов, цены на услуги лаборатории и т.д.), и тогда практический и экономический эффект выбранного метода будет максимальным.